Why is Differential Evolution Better than Grid Search for Tuning Defect Predictors?

نویسندگان

  • Wei Fu
  • Vivek Nair
  • Tim Menzies
چکیده

Context: One of the black arts of data mining is learning the magic parameters that control the learners. In software analytics, at least for defect prediction, several methods, like grid search and differential evolution(DE), have been proposed to learn those parameters. They’ve been proved to be able to improve learner performance. Objective: We want to evaluate which method that can find better parameters in terms of performance score and runtime. Methods: This paper compares grid search to differential evolution, which is an evolutionary algorithm that makes extensive use of stochastic jumps around the search space. Results: We find that the seemingly complete approach of grid search does no better, and sometimes worse, than the stochastic search. Yet, when repeated 20 times to check for conclusion validity, DE was over 210 times faster (6.2 hours vs 54 days for grid search when both tuning Random Forest over 17 test data sets with F-measure as optimzation objective). Conclusions: These results are puzzling: why does a quick partial search be just as effective as a much slower, and much more, extensive search? To answer that question, we turned to the theoretical optimization literature. Bergstra and Bengio conjecture that grid search is not more effective than more randomized searchers if the underlying search space is inherently low dimensional. This is significant since recent results show that defect prediction exhibits very low intrinsic dimensionality– an observation that explains why a fast method like DE may work as well as a seemingly more thorough grid search. This suggests, as a future research direction, that it might be possible to peek at data sets before doing any optimization in order to match the optimization algorithm to the problem at hand.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Multi-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect

This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance.  First the problem is encoded with a...

متن کامل

Fuzzy logic controlled differential evolution to solve economic load dispatch problems

In recent years, soft computing methods have generated a large research interest. The synthesis of the fuzzy logic and the evolutionary algorithms is one of these methods. A particular evolutionary algorithm (EA) is differential evolution (DE). As for any EA, DE algorithm also requires parameters tuning to achieve desirable performance. In this paper tuning the perturbation factor vector of DE ...

متن کامل

Fuzzy logic controlled differential evolution to solve economic load dispatch problems

In recent years, soft computing methods have generated a large research interest. The synthesis of the fuzzy logic and the evolutionary algorithms is one of these methods. A particular evolutionary algorithm (EA) is differential evolution (DE). As for any EA, DE algorithm also requires parameters tuning to achieve desirable performance. In this paper tuning the perturbation factor vector of DE ...

متن کامل

Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive

In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1609.02613  شماره 

صفحات  -

تاریخ انتشار 2016